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Readily available ferrocenyldialkylphosphines are effective
air-stable catalysts for Baylis—Hillman reaction between
aldehydes and acrylates, affording the corresponding ad-
ducts in high yields and short reaction times. A set of readily
accessible planar chiral ferrocenyldialkylphosphines have
been tested in asymmetric Baylis—Hillman reactions. The
best enantioselectivities were obtained using Mandyphos as
chiral catalyst (up to 65% ee).

The development of catalytic carbon—carbon bond-
forming reactions leading to highly functionalized build-
ing blocks from simple starting materials is a fundamen-
tal challenge in organic chemistry. The Baylis—Hillman
reaction,! which allows the direct preparation of a-me-
thylene-3-hydroxycarbonyl products from Michael accep-
tors and aldehydes, is a clear example of this kind of
outstanding process. This reaction is promoted by Lewis
bases, among which nucleophilic nonhindered tertiary
amines, such as diaza[2.2.2]bicyclooctane (DABCO), have
been the most widely used. Nevertheless, the great
synthetic potential of the Baylis—Hillman reaction is
often hampered by low reaction rates (reactions lasting
a week or more are common) and chemical yields highly
sensitive to the substitution at both aldehyde and Michel
acceptor partners. In attempts to overcome these limita-
tions, a wide variety of chemical (more activated carbonyl
compounds,? hydrogen bonds donors,? metal salts,* Lewis
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acids,? ionic liquids®) and physical methods (high pres-
sure,” ultrasounds,® microwave irradiations®) have been
described in recent years.

With the aim of developing more active Lewis base
catalysts for Baylis—Hillman reaction, phosphines,!©
especially the highly nucleophilic trialkylphosphines,!!
constitute a very interesting alternative to the more basic
tertiary amines. However, unlike tertiary amines, tri-
alkylphosphines must be used under careful experimen-
tal conditions due to their high sensitivity to air oxidation
and in some cases pyrophoric character.!? Having in mind
the idea of developing a phosphine catalyst enjoying
simultaneously stability to air oxidation and high nu-
cleophilicity, we envisaged that due to the electron-rich
character of the ferrocene moiety, ferrocenyldialkylphos-
phines could be interesting catalysts in Baylis—Hillman
reaction. Additionally, planar chiral ferrocenylphos-
phines, which have provided countless examples of excel-
lent enantiocontrol in catalytic asymmetric metal-
catalyzed reactions,'® could offer a new alternative in
asymmetric Baylis—Hillman reaction.

On the basis of these considerations, the ferroce-
nylphosphines 1a—c were readily prepared according to
literature procedures by reaction of ferrocenyllithium
with the corresponding chlorophosphine.'* Table 1 sum-
marizes the results obtained in the model reaction
between benzylacrylate and p-nitrobenzaldehyde (in THF
at rt) in the presence of 15 mol % of the phosphine
catalyst (ferrocenylphosphines la—c and the commer-
cially available PPh; and PCys;).15 For comparison pur-
poses, all reactions were stopped after 1 h of reaction.
To our delight, we observed that the diphenylphosphi-
noferrocene 1a (entry 1) was not only much more reactive
than PPhs (entry 4), but even more reactive than the
aliphatic trialkylphosphine PCys (entry 5, 24% conver-
sion). Interestingly, in agreement with the increase in
nucleophilicity with the alkyl substitution, ferrocenyl-
dialkylphosphines 1b and 1c¢ proved to be more effective.
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TABLE 1. Ferrocenylphosphines as Catalysts in the
Baylis—Hillman Reaction between Benzylacrylate and
p-Nitrobenzaldehyde

o o OH O
/Ej)L H+ HkOBn Catalyst M OBn
0N THE, i, 1h o\ ,
(4 equiv)
entry  catalyst Conv.(%)"  Yield(%)’
O 50 )
2 ?‘:’:y 95 74
2
3 100 08
S
4  PPh 0 0
5  PCy, 2% 8

@ Determined by 'H NMR analysis of the crude reaction mixture.
b Isolated yield after flash chromatography.

TABLE 2. Baylis—Hillman Reaction Catalyzed by
Ferrocenyldiethylphosphine 1c

< PE,
o Fe 1c
@ OH O
j)]\ ) (15 mol%)
RI”SH + | OrR R! OR2
THF, rt
2-8
entry R! R2 compd t (h) yield® (%)
1 p-NO2CeHy Bn 2 1 98
2 p-NO2CeHy Me 3 1 84
3 p-FCeHy Bn 4 3 85
4 CeHs Bn 5 3 76
5 2-Py Bn 6 15 62
6 Cy Bn 7 3 72
7 Me Bn 8 3 69
@ Isolated yield after flash chromatography.

In particular, the least hindered diethylphosphine 1c¢
promoted a complete conversion within 1 h, providing the
Baylis—Hillman adduct 2 in an excellent 98% yield (entry
3). Ferrocenylphosphines 1a—c are perfectly stable com-
pounds that can be handled in air, affording very similar
results in the Baylis—Hillman reaction either under inert
atmosphere or in open-air flasks.

With the optimized catalyst 1¢ in hand, we next
explored the scope of the process by studying a variety
of aldehydes. As shown in Table 2, several aromatic
aldehydes with varied subtitution provided good yields
(76—98%, entries 1—5) in short reaction times (1—3 h).
Because aliphatic aldehydes are very prone to suffer
aldolic condensation, most of the reported Baylis—Hill-
man reactions involve the use of aromatic aldehydes,
especially those promoted by basic tertiary amines.
Remarkably, ferrocenylphosphine 1c¢ catalyzed the Bay-
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FIGURE 1. Tested chiral nonracemic ferrocenylphosphines.

lis—Hillman reaction with both branched and linear
aliphatic aldehydes (entries 6 and 7), providing the
corresponding alcohols in satisfactory yields after chro-
matographic purification (69—72%).

In the past few years, great progresses toward the
development of a enantioselective version of the Baylis—
Hillman reaction,'® including the use of chiral auxilia-
ries,!” chiral Lewis bases,!® and chiral Lewis® or Brgn-
sted® acids, have been described. Despite all these
improvements, the identification of a broad scope, asym-
metric version of this reaction remains an unsolved
problem. Until now, concerning the use of chiral phos-
phines in asymmetric Baylis—Hillman reaction with
aldehydes, only moderate enantioselectivities have been
reported (up to 44% ee with BINAP).2021

Encouraged by the results illustrated in Tables 1 and
2, we decided to explore the potential of planar chiral
ferrocenylphophines in asymmetric Baylis—Hillman re-
actions (Figure 1).22 To this end, we tested sulfenylphos-
phinoferrocenes 9 and 10 developed by our group as
bidentate planar chiral P,S-ligands in enantioselective
metal-catalyzed reactions,? as well as the commercially
available aminophosphinoferrocenes 11—-13 and the
diphosphinoferrocene 14, combining both planar and
central chirality (Table 3).
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TABLE 3. Asymmetric Baylis—Hillman Reaction
Catalyzed by Chiral Phosphinoferrocenes

o} o OH O

/©)J\H+ Hkosn Catalyst Mosn

O,N THF, rt O,N 2

(4 equiv)

entry catalyst t (h) yield?® (%) ee? (%)
1 9 22 84 4(S)
2 10 16 74 29 (R)
3 11 22 78 65 (R)
4 12 22 40 55 (R)
5 13 22 28 55 (R)
6 14 22 51 24 (R)

@ Isolated yield after flash chromatography. ® Determined by
Chiral HPLC analysis (Daicel Chiralcel AD column, hexane//PrOH
91/9, 0.5 mL/min.). ¢ Absolute configuration determined by com-
parison with previously described data.5

According to the bulkier character of these catalysts,
compared to the parent ferrocene 1e, the reaction with
p-nitrobenzaldehyde was slower (16—22 h), giving rise
to the product 2 in yields highly depending on the catalyst
used (28—84% yield). Disappointingly, from a stereo-
chemical point of view, the enantioselectivities were low
to moderate. The Mandyphos-type ferrocenylphosphine
11, with two pendant dicyclohexylphosphine and di-
methylamino groups, proved to be the best catalyst
providing the Baylis—Hillman adduct 2 in 78% yield and
65% ee?* (entry 3). No improvement in the enantioselec-
tivity was observed when this reaction was performed
at 0 °C instead of room temperature.

In summary, the readily available and air-stable
ferrocenyldiethylphosphine is a highly active catalyst in
the Baylis—Hillman reaction between acrylates and
aldehydes. Good to excellent yields have been obtained
with a range of aldehydes within low reaction times.
Enantioselectivities up to 65% ee were obtained in the
asymmetric Baylis—Hillman reaction using planar chiral
ferrocenylphosphines.

Experimental Section

The Baylis—Hillman adducts 2, 3, 5, and 8 have been
previously reported.>

Typical Procedure for the Baylis—Hillman Reaction.
Synthesis of Benzyl 3-Hydroxy-3-(4-nitrophenyl)-2-meth-
ylenepropanoate (2). To a solution of diethylferrocenylphos-
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phine (25 mg, 0.0912 mmol) and p-nitrobenzaldehyde (91.9 mg,
0.608 mmol) in dry THF (1,8 mL) was added benzyl acrylate
(394.1 mg, 2.43 mmol) at room temperature under nitrogen
atmosphere. The resulting mixture was stirred for 1 h, after
which time the solvent was removed under reduced pressure.
The residue was purified by flash chromatography (SiO2, Hex/
EtOAc 3:1) to afford 2 (195 mg, 98%) as a colorless oil. 'H NMR
(CDCly): o6 8.15 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 8.4 Hz, 2H),
7.36—7.23 (m, 5H), 6.45 (s, 1H), 5.91 (s, 1H), 5.63 (s, 1H), 5.15
(s, 2H), 3.38 (br, 1H). 13C NMR (CDCls): 6 165.6, 148.5, 147.5,
141.0, 135.1, 128.6 (x2), 128.5, 128.3 (x2), 127.5, 127.3 (x2),
123.6 (x2), 72.8, 67.0.

Benzyl 3-Hydroxy-3-(4-fluorophenyl)-2-methylenepro-
panoate (4). Colorless oil. Yield: 85%. 'TH NMR (CDCl;): 6
7.837—17.23 (m, TH), 7.05—6.96 (m, 2H), 6.40 (s, 1H), 5.91 (s, 1H),
5.55 (s, 1H), 5.13 (s, 2H), 3.45 (br, 1H). 13C NMR (CDCls): 6
166.0, 142.0, 137.1, 135.4, 128.6 (x2), 128.6, 128.4, 128.4, 128.1
(x2), 126.3 (x2), 1154 (x2), 72.5, 66.7. IR: 3431.1, 3035.1,
2953.8, 1716.5, 1508.8, 1267.2, 1155.3, 1097.5, 837.4, 737.2. MS
(EI+) m/z: 195 (M* — Bn, 49), 177 (56), 134 (25), 123 (67), 91
(100). HRMS (EI"): caled for (C10HsOsF) [M* — Bn] 195.0457,
found 195.0456.

Benzyl 3-Hydroxy-3-(2-pyridyl)-2-methylenepropanoate
(6). Colorless oil. Yield: 62%. 'H NMR (CDCls): 6 8.42—8.40
(m, 1H), 7.53 (dt, J 7.6, 1.7 Hz, 1H), 7.30—7.06 (m, 8H), 6.33 (s,
1H), 5.90 (s, 1H), 5.56 (s, 1H), 5.07 (s, 2H). 13C NMR (CDCls):
0165.9, 159.5, 148.3 (x2), 141.8, 136.8 (x2), 135.6 128.5, 128.2,
128.1, 127.2,122.6, 121.2, 72.2, 66.5. IR: 3445, 3064.6, 1956.40,
1715.8, 1437.5, 1046.8, 952.5, 736.4. MS (FAB™) m/z: 270 (M*
+ 1, 49), 162 (56), 91 (100). HRMS (electrospray™): caled for
(C16H16NOs3) [MT + 1] 270.1124, found 270.1123.

Benzyl 3-Cyclohexyl-3-hydroxy-2-methylenepropanoate
(7). Colorless oil. Yield: 72%. 'H NMR (CDClg): 6 7.39—7.34
(m, 5H), 6.30 (d, J 0.8 Hz, 1H), 5.75 (d, J 0.8 Hz, 1H), 5.22 (s,
2H), 2.49 (d, J 8.1 Hz, 1H), 1.9-0.88 (m, 11H). 3C NMR
(CDCly): ¢ 165.5, 141.2, 135.7, 128.6 (x2), 128.3, 128.1 (x2),
126.4, 66.5, 42.5, 29.9, 28.2, 26.3, 26.1, 25.9. IR: 3493.0, 3035.2,
2929.4, 2853.4, 1718.4, 1627.9, 1498.5, 819.9, 737.1. MS (EI")
m/z: 274 (M* + 1, 0.4), 256 (1), 222 (0.1), 91 (100). HRMS
(ET™): caled for (C17H2203) [M*] 274.1568, found 274.1563.
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